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Summary

Postulating linear regression models efficiencies of exactly 'design-unbiased
'regression' and 'regression-type' estimators for finite population means are
studied vis-a-vis the 'design-biased' regression estimator based on SRSWOR
Scheme.
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Introduction

Singh and Srivastava [10] suggested two sampling schemes ensuring
design-unbiasedness of a 'regression' and a 'regression-type' estimator
for a finite population mean. Here the purpose is to investigate the
efiaciency of each relative to .that.of the design-biased 'regression' estim
ator based on SRSWOR Scheme. A usual 'linear regression model' in a
super-population set-up is postulated and their relative performances
found out.

1. When the paper was written, the second author was at Indian Statistical
Institute, Calcutta.
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2. Formulation of the Problem and the Results

Let Yand Xbe real-variates with vali^s Yi, Xi(i = I, . . . , n) for a
finite population of iV units with means Y, X. For any sample fgeneric-
^ly, each supposed to be of a fixed size n) the regression estimator for ,
ris ^

t^y + b (X~ X)

where x are sample means and b = sxyjsl where

where S' is sum for a sample, ;C('s are sampled values.

Wrking = xc -X, Xi = Z,: - X, yi = yi - Y, 7.' ^ Y( - Y. x' =
X-X.p' = rand

= I
where S is sum over the population, Singh and Srivastava [10] gave a
scheme for which selection probability for s is

For this (t) = f but E, (t) 9^ f where E^, E, are expectation-oper
ators with respect todesigns pand equal probability sampling (SRSWOR),
respectively.

For their another scheme the selection probability is

If
Their proposed regression-type estimator is

y ^i/2'

for which (?i) = 7i.e. is design (q)—unbiased for Y.
Writing Vp, Vc, respectively as variance-operators with respect to

designs;?, SRSWOR and q it may be checked that

(0 = ^ E, Wsi - 2y- X' sxy -f s'Jsl]
X
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^ ^ S' yi ^;/s' S' ^;*] - yi.
Postulate a model enabling us to write

71 = a + p

where a, p are unknown regression-parameters and a is a random
variate with conditional (given values) expectation and variance (with
respect to an implied super-population) as 0 and 8 XI with S > 0 and
0 < ^ < 2. Writing Em as the expectation-operator under this model
(assuming Z/s as non-stochastic) and incorporating this model into the
system work out the following:

Et4VAt)==-^ ^»[(-^ S~ il; S

jc'8
+ in - ])* • si

= „"1 ^ jS(in case =0) =/(say)

(n

+^ 2 - 2(a M) (oc -f pXi)
^ „ X 2^XiXi+

^ x'i (Xi - x)*

N 1: (a + P xf L« - 1 iV(«- 1) si

=(. +M)'a- l) +-^(| -i)8 =;/(say)
For t based on SRSWOR, an asymptotic expression for F<, (i) is well-
known (vide Cochran [4] as [{N - n)/Nn] (1 - p^), where

S' X'^ - n x'^
S';c;2
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In case g = 0, we have

Fora theoretical comparison of strategies, consider throughout the case
g = 0 (the homoscedastic case). Singh and Srivastava [10] also illustrat
ed a special (normal) case ofthis. Though values ofg over the interval
[1, 2] are more realistic we find it difficult to derive elegant results with
such values of g. However in the Appendix we present a Monte Carlo
study illustrating the performance ofthese strategies with g in [0, 2]

By Cauchy-Schwarz's inequality we get

S'y

£,(!•'x'^)Eo
s' ;c'/ - n

S' x'^
> x'^ -nx'»

i.e. Ee
S' x'^ - n x-'f

2' ;c;^

Now Ec (S' xi® - n x's) = E^ S' {Xf - xy = (« - 1) SI

and Ec (S' x'̂ ) = E, [S' {xi - + « (^ -

El iE' X? - n X'*)
^ E, (S' ^-?)

= + -i)

so that Eo
S' x'^ -

X?

n - 1 N{n-\)
N-l

SI

implying that A > 1 and hence

Result 1 {a) II > I > ///;
{b) II > I III.

The result {b) is more discernible because the asymptotic expression for
V,{t) is valid only for large samples and it underestimates the variance
of t for small samples. In fact, it is more important to note that I si III
for large n (and hence large N). To 0(l/n®) also, if s" = 0> EmVcO) =
„ _ 2/« —3 (I/,I —1/N) S j=i 7. So, it is not quite helpful to learn from
Singh and Srivastava [10] that Fc/Fp 1.70 for « = 4 when 11 finite
populations of size N = 20 are generated each from bivariate normal
distributions, their apparent contradictions with ours,

/

Y
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For t based on SRSWOR, we also work out an exact expression for
EmVcU) as follows :

£a,F.(()-8£,[(-L ^+ S"!)
M M S' 4 (^i - X) 2' (Xi - xy 1
It "Iv j {^'{Xi-m'J

x"

={T-iy+"'- L s' (xi - xy J
(in case g = 0)

If following Avadhani and Srivastava [2] we assume n and N so large
that for each j we may ignore the error in neglecting x', then we have
approximately

EmVAO^ S = IIIA(say)

With this assumption

("+w +-7^(i - i) 8= (''y)
and hence

Result 2 (a) IVa > / /// «^ IIIa for large n

(b) EMVg{ty) > EidVoit) > EMVf{t) for sinall or moderate n

(c) EMh) > E,nV,{t) =i EmVvU) for large k if g = 0.

If further it is assumed that Zj's are random variates distributed inde-
pbndently identically normally with a mean m and variance (say), then
denoting the model-expectation (for variation of d given Xi and then
over Zi) by Em and assuming (on the strength of the lawof largenumbers)
X (for finite population with N large) to equal m, we have

EuVoit)

E'MV,{t)

_( n iV )+ «(« - 3) J
{n - ly (n

1
= Ilh (say),

= IVb (say)

on neglecting the error in writing 1 for — 1/A'̂ and S X'̂ si N (using
the fact that S zf/a^ = 2 (Zj — is ^ chi-square variate with N
degree of freedom). So
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Result 3 Ills > T; but

m-im- 2(«+l)
in - 1)^ in - 2)

(« + -
n-\

2

L k(« - 3) ^ N J

Which may be either positive or negative^. > _
Incidentally, we note that EmE^ it — Y) = 0, although Eo it — ¥) ^ 0

i.e. t is 'model-d^ign-unbiased' thoughjt is 'design-biased'. We also note
that EmEv it—Y) = 0 and Em it — Y) = 0 i.e. t is 'n^del-design ip)-
unbiased' ^ well as 'model-unbiased'. But EmEq (fj —Y) = 0 although
Em iti — Y) ^ 0 i.e. ti is 'model-design(^)-unbiased' though it is not
'model-unbiased'.

So it is concluded that two strategies due to Singh and Srivastava [10]
may offer fare worse than the classical strategy of regression estimator
with SRSWOR Scheme; however the latter also does not always beat the
former two.

It may be recalled that a similar situation prevails in respect of ratio
estimators based on SRSWOR and Lahiri-Midzuno-Sen (LMS, say, in
brief, [5], [6], [9]) scheme—the latter is design-unbiased, the former is
design-biased but in terms of efficiency neither is uniformly better than
the other (as may be checked from Arnab [1], Avadhani and Srivastava
[2] and Chaudhuri and Adhikary [3] among others).

3. Variance Estimation

Incidentally, it may be noted that the unbiased estimators for Vpit)
and V^iti) proposed by Singh and Srivastava [10] following Raj [7]should
often turn out negative because it is known that Raj's variance-estimator
(for ratio estimator based on LMS-Scheme) is negative for samples with
high selection-probabilities. Following Rao [8] and noting that Vpit) and
V,iti) equal 0, when Yi == C Xi and Yi = C Xl i = 1 A''respect
ively (for some C 0), these can be written as

i < j=l

N

and Kiti) = ^ ^ d^j Xj Zj ^ ^ .̂
where dij = ( S dis dj, pis)\ — 1 = en — say,

\s^ij )

d'i) = S id\, d'is qis)) - 1 = e'ij - 1, say.

Y
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where di, = 0 if J ^ i

N

n _
\-nx'

and d'u = 0

{xi - X)
ifi 3 i

if J ^ i

XfN- 1

«- 1 L
I -nx'

X-' _
if J 3 z

267

then, non-negative quadratic unbiased estimators of Fp (t) and Va ('i) are
necessarily of the form, respectively,

i <j es

i < y S j

where du (s) = 0ifj /, j, ^ dij (s) p (s) = dij, i < j and do (s) 0
s

ifJ 5? i,J, S d'u (5) qis) = dIj, i < j. We may consider two classes of
S

estimators for each of (i) and V, (ti) of the above-noted form as
follows :

Ci : dij (s) = eij f'- + I -fx
Mipis) _

/z 1 ""/a
Msp(j) .

1-/2

L •^ij

Ci ! dfj (j) — dis dji

f{Cj : dij (s) = ell

L

1-/3
L it.v MzPis) _

C2' : d!j is) = d(s dj's -

where

^2 =( 2), ".i = 2 i' W'
\ ^ ^ * » —. ; ; c =i r ?

/a' ^ 1-/3

1 IL

j

+ M2g(^) J

•r 9 ;• J 9 UJ

= 1, 2, 3) are any constants independent of sample chosen and of
variate-values chosen arbitrarily before the survey with values of each
overthe closed interval[0, 1]—simplest and the most practical choice to
be recommended is either 0 or 1 (independently of one another) for each.
The inclusion-probabilities of first two orders for the sampling: schemes
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jj(s) and g(s) are respectively obtained as

_ nN-N-n N-n X'̂

' 3

V / X nN-N-n , N-n X-*
N(N-2) N-2

s 3 I •

V rM- ("-2)(Nn-N-2n) Uj - X,)* /
s B't J

(N-n) (N-n-l) , X?+ X^ (n - 2) (N - n)
{N-2)(N-3) ^ iN-2)(N-3)

_ V ^ , N-nI 2,. " iV- 1 + N- 1
S3 i

Xj'

y N-l N-2 N-l N-2 SZJ»
^3'iJ
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APPENDIX

A Monte Carlo Study

\ In the above theoretical study only the case g = 0 isinvestigated while
^is likely to lie between 1 and 2 in many practical situations. So take up
a Monte Carlo Study which can be used to confirm the theoretical results
as well as to fill up the gap of theoretical study. Consider the following
two cases with parametric combinations as given below :

Case I: N= 5, n = 2, a = 2, p = 3, S = 2

Case 77: jV = 6, « = 3, « = 6, P = 3, 8 = 5

The values of x considered in the two cases are 2, 4, 5, 3, 6, and 6, 9, 12,
18, 21, 24 respectively. Choosing ei from N (0, the corresponding
.V-values may be obtained from the relation yi = a. + ?> Xi + ei. For
example, for g' = 1 the corresponding :)'-valuesin the two cases respectiv
ely turn out as 8.1, 15.7, 20.7, 13.4, 20.9 and 29.2, 36.1, 47.9, 69.0, 69.9,
95.6. But as the expected variances of the estimators are independent of
j'-values we do not show them for all values of g. For diflferent values of
g viz. g = 0.0, 0.5, 1.0, 1.5 and 2.0 we report below in Table 1 the values

y of EmVJj) , EAiVgiti) and EmVcU) using exact expressions for them
which are denoted by VI, V2 and V3 respectively. For EmVJj) we have
also considered the asymptotic expression for Vc(t) in which case^wFoCO i
is denoted by V4. The figures within the parentheses correspond to
Case II.

TABLE 1-EXPECTED VARIANCES OF FOUR SAMPLING STRATEGIES

FOR VARIOUS VALUES OF g-

V\ V2 V3 y4

= 0.0 1.20 ( 1.25) 64.86 (253.53) 2.82 ( 2.12) 0.45 ( 0.67)

g = 0.5 2.36 ( 9.49) 66.02 (253.98) 5.55 ( 22.81) 0.89 ( 2.52)

8 = 1.0 4.80 ( 36.13) f8.46 (268.01) 11.29 ( 88.30) 1.80 ( 10.00)

e = 1.5 9.95 (154.14) 73.72 (326.97) 23.43 (366.34) 3.73 ( 41.13)

g = 2.0 21.04 (662.52) 85.26 (582.35) 49.61(1583.86) 7.89 (174.50)

Defining the relative efficiencies of strategies as Ei — 100 (VtlVt), i = 1,
2, 3, 4 we present below in Table 2 the values of the relative efficiencies
of the strategies for various values of g considered above. Here also the
figures within the parentheses correspond to Case II,
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TABLE 2--RELATIVE EFFICIENCIES OF SAMPLING STRATEGIES FOR

VARIOUS VALUES OF s

El E2 El £•4

11

O
b

5405 (20042) 100 (100) 2300 (11817) 14413 (37392)

g = 0.5 2797 (2676) 100 (100) 1190 (1113) 7418 (10079)

g = 1.0 1426 (742) 100 (100) 606 (303) 3803 (2680)

g == 1.5 741 (212) 100 (100) 315 (89) 1976 (795)

11

b

405 (88) 100 (100) 172 (37) 1081 (334)

Note from Table 1 that for g = 0.0 in both the cases

Ka > F3 > Fx > F,

which conforms to our theoretical result. The same ordering is also found
to hold good for other values of g-considered in both the cases excepting
the situations g = 1.5 and g = 2.0 in Case II.

V


